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Abstract

Significant gaps remain in understanding the response of plant reproduction to environmental change.
This is partly because measuring reproduction in long-lived plants requires direct observation over many
years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a
dataset that collates reproductive time-series data from across the globe and makes these data freely

available to the community.

MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g., seed and fruit
counts) in perennial plant populations worldwide. These observations consist of 5,971 population-level
time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10
years respectively, and the dataset includes 1,122 series that extend over at least two decades (>=20
years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of
time-series across geographical and climatic gradients. Here we describe the open-access dataset,
available as a .csv file, and we introduce an associated web-based app for data exploration. MASTREE+
will provide the basis for improved understanding of the response of long-lived plant reproduction to
environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of
reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem

dynamics.

Resumen

Auln existen importantes vacios en la comprensidn de la respuesta reproductiva de las plantas al cambio
medioambiental, en parte, porque su monitoreo en especies de plantas longevas requiere una
observacién directa durante muchos afios, y estos conjuntos de datos rara vez han estado disponibles.
Aqui presentamos a MASTREE +, una base de datos que recopila series de tiempo de la reproduccién de
las plantas de todo el planeta, poniendo a disposicion estos datos de libre acceso para la comunidad

cientifica.

MASTREE + incluye 73.828 puntos de observacién de la reproduccién anual georreferenciados (ej. conteos
de semillas y frutos) en poblaciones de plantas perennes en todo el mundo. Estas observaciones consisten
en 5,971 series temporales a nivel de poblacién provenientes de 974 especies en 66 paises. La mediana de

la duracion de las series de tiempo es de 10 afios (media = 12.4 afios) y el conjunto de datos incluye 1.122
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series de al menos dos décadas (>= 20 afios de observaciones). Para un subconjunto de especies bien
estudiadas, MASTREE + incluye un amplio conjunto de series temporales replicadas en gradientes
geograficos y climaticos. Describimos el conjunto de datos de acceso abierto disponible como un archivo
.csv y presentamos una aplicacién web asociada para la exploracién de datos. MASTREE+ proporcionara la
base para mejorar la comprensidon sobre la respuesta reproductiva de plantas longevas al cambio
medioambiental. Ademds, MASTREE+ facilitara los avances en la investigacidn de la ecologia y la evolucidn
de las estrategias reproductivas en plantas perennes y el papel de la reproduccidon vegetal como

determinante de la dindmica de ecosistemas.

Keywords

Plant reproduction, masting, flowering, general flowering, demography, regeneration, recruitment

This article is protected by copyright. All rights reserved



1. Introduction

Climate change and other anthropogenic drivers are altering plant demographics, with reported changes
in plant mortality, growth, and reproduction (Allen et al., 2010; McDowell et al., 2020; I. S. Pearse,
LaMontagne, & Koenig, 2017; Senf et al., 2018). These demographic shifts are changing the composition
and structure of vegetation, with far-reaching effects on ecosystem functioning and services, including
complex effects on biodiversity and terrestrial carbon sinks (Carnicer et al., 2011; Chen et al., 2019; Clark
et al., 2016; Ruiz-Benito et al., 2017). In most plant species, seed production is a key process limiting
sexual reproduction. However, our understanding of climate-driven changes in seed production lags
behind other key demographic processes such as growth and mortality (Clark et al., 2021), where
inventory data, tree-ring networks and remote sensing have transformed understanding of responses to
environmental change (Buras, Rammig, & Zang, 2020; Changenet et al., 2021; Klesse et al., 2020).
Reproduction and other processes associated with plant recruitment require direct and intensive field-
based observation over many years. However, there have been few previous attempts to collate, archive,
and make available original data from long-term monitoring studies across taxa and wide geographic
areas (Ascoli, Maringer, et al., 2017; Koenig & Knops, 2000; lan S. Pearse, LaMontagne, Lordon, Hipp, &
Koenig, 2020). Consequently, the response of plant reproduction to ongoing environmental change
remains poorly understood, and paucity of data compromises the parameterisation of reproduction in

models used to predict future vegetation dynamics (Fisher et al., 2018; Vacchiano et al., 2018).

Recent analysis of long-term datasets indicates that seed production may be sensitive to climate change.
Where increases in temperature favour reproduction, warming is linked to increased seed production
(Bogdziewicz, Kelly, Thomas, Lageard, & Hacket-Pain, 2020; Buechling, Martin, Canham, Shepperd, &
Battaglia, 2016; Caignard et al., 2017), whereas in drought-limited populations seed production has
declined in association with warming (Redmond, Forcella, & Barger, 2012). Additionally, environmental
change may alter the interannual variability and spatial synchrony of reproduction (Hacket-Pain &
Bogdziewicz, 2021; I. S. Pearse et al., 2017). These shifts in reproduction have consequences for
recruitment and wider ecosystem dynamics (Pau, Okamoto, Calderon, & Wright, 2018; Redmond et al.,
2012; Schupp et al., 2019). For example, long-term reductions in tropical rainforest fruit production have
been linked with declining vitality of herbivorous megafauna (Bush et al., 2020), and low seed availability
can limit forest recovery after large-scale mortality events (Redmond, Weisberg, Cobb, & Clifford, 2018).
Beyond changes in mean seed and fruit production, shifts in the spatiotemporal variability of flowering

and fruiting (i.e. masting) will also have impacts on key ecosystem services and habitat management (I.S.
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Pearse, Wion, Gonzalez, & Pesendorfer, 2021) including commercial and subsistence food crops (Calama
et al., 2011; Ladio & Lozada, 2004; Shelef, Weisberg, & Provenza, 2017), seed-eating animal population
dynamics (Touzot et al., 2020), and human health through the trophic interactions that drive vector-borne
zoonotic disease dynamics (Bennett et al., 2010; Bregnard, Rais, & Voordouw, 2020). However, the
direction and magnitude of reported changes in masting are inconsistent, and this variability in response

remains poorly understood (Hacket-Pain & Bogdziewicz, 2021).

As the magnitude of plant reproduction is highly variable across time and space (Figure 1), multi-decadal
time-series of plant reproductive effort with high replication and sampling across environmental gradients
are needed to derive meaningful inferences and predictions from modelling efforts (Clark et al., 2021; I.S.
Pearse et al., 2021; Pennekamp et al., 2019; Vacchiano et al., 2018). The availability of such data will
enable robust estimates of the response of plant reproduction to recent environmental change, and
through identification of the underlying drivers, prediction of future trends. MASTREE+ provides these
time-series of plant reproductive effort, and will enable testing of changes in masting patterns associated
with recent environmental change across multiple species and geographical regions (Hacket-Pain &
Bogdziewicz, 2021; J.M. LaMontagne, Redmond, Greene, & Koenig, 2021; I. S. Pearse et al., 2017). Such
datasets will also enable new insights into the ecology and evolution of perennial plant reproduction
(Dale, Foest, Hacket-Pain, Bogdziewicz, & Tanentzap, 2021), and the role of plant reproduction as a driver
of other ecological processes including plant recruitment and animal population dynamics (Brumme et al.,

2021; Connell & Green, 2000; Curran & Leighton, 2000; Schupp et al., 2019).

2. MASTREE+

Here we introduce a project to collate data of perennial plant reproductive time-series. Time-series
originate from diverse sources, including 17+ century European forestry records of seed production (“mast
years”) (Ascoli, Vacchiano, et al., 2017), data from ongoing plant reproductive biology and phenology
monitoring programmes (e.g. RENECOFOR, LTER, California Acorn Survey), and projects studying the
dynamics of ecosystems including the relationships between seed production and animal demographics
(Boutin et al., 2006). Many of these datasets record the number or mass of flowers, seeds, fruits or cones
per individual or unit area on a continuous scale. We also include ordinal time-series which record annual
reproduction output according to an ordered categorical scale (e.g. failure/partial/full crop) which can be
successfully used to investigate the variability and synchrony of plant reproduction (Bogdziewicz, Hacket-

Pain, Ascoli, & Szymkowiak, 2021).

This article is protected by copyright. All rights reserved



The current version of MASTREE+ currently includes 5,971 species-specific and georeferenced time-series
representing 73,828 annual observations of reproductive effort in perennial plant populations, and the
project is designed to continue to assemble and update records (see Section 4 and 5). Mean and median
time-series length are 12.6 and 10 years respectively. 2,846 series are based on continuous measures of
reproductive effort, and 3,125 are ordinal series. Ordinal series originate mainly from

Europe. Importantly, MASTREE+ contains 1122 time-series >20 years, of which 187 time-series exceed
40 years of observations. Such records will enable quantification of recent changes in plant reproduction,
including mean reproductive effort and spatiotemporal variability, and the identification of key drivers of

change.

In total, 974 species are represented, drawn from 136 families across the plant Tree of Life. This increases
species representation by 168 % compared to the largest previously available compilation (lan S. Pearse et
al., 2020), which is incorporated into MASTREE+. This expands the potential to quantify reproductive traits
that describe the spatiotemporal variability of reproduction (i.e., masting) with other life-history traits to
better understand the evolution of plant reproductive strategies (Dale et al., 2021; Fernandez-Martinez et
al., 2019; Pesendorfer et al., 2021). For example, we have 67 species overlap with the plant demographic
database COMPADRE (Salguero-Gomez et al., 2015), 442 species overlap with seed mass data from the
Kew Seed Information Database (Royal Botanic Gardens Kew, 2021), and 82 species overlap with the seed
germination database SylvanSeeds (Fernandez-Pascual, 2021). Reflecting a bias in sampling to temperate
forests, woody species from the genera Quercus (60 species), Nothofagus (10), Pinus (25), Abies (13), Acer
(13) and Eucalyptus (15) are highly represented, but other well-represented genera include Acacia (11),
Shorea (9) and Chionochloa (11). We include data from 66 countries, six continents (Figure 2), and from all
the major vegetated biomes (Figure 3). Importantly, we increase data representation from regions that
have been unrepresented in previous datasets (Ascoli, Maringer, et al., 2017; lan S. Pearse et al., 2020),
including south and central America, Africa, and Asia, although these regions remain strongly under-

represented.

Sampling intensity varies between species. For example, 71% of species are represented by a single time-
series, but other species have high replication, often covering large parts of their geographical
distribution. 51 species are represented by at least 10 location-specific time-series. The most replicated
species are Fagus sylvatica (913 site-specific time-series), Picea abies (844), Pinus sylvestris (419), Larix
decidua (395), Abies alba (393), Quercus robur (188), Quercus petraea (161), Pinus cembra (135) and Picea
glauca (108). These and other well-replicated species include data spanning large climatic gradients

(Figure 3). These records will enable investigation of intraspecific variation in plant reproduction across
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climate, space, and time, including trends in the spatiotemporal variability of reproduction. It will also
enable comprehensive assessments of intraspecific variability of masting characteristics (i.e. interannual
variability, autocorrelation), including variation with environmental conditions that are predicted by
theory but have rarely been tested (lan S. Pearse et al., 2020; Pesendorfer et al., 2021), and analysis of
interspecific variation in spatial synchrony of reproduction (Dale et al., 2021), in functionally diverse plant

species.

3. Applications of MASTREE+

MASTREE+ provides the datasets to establish how fecundity, and specifically seed masting, responds to
environmental change. It includes the high replication of long time-series required to isolate climate
change effects on plant reproductive effort (Hacket-Pain & Bogdziewicz, 2021; Mundo, Sanguinetti, &
Kitzberger, 2021), while high spatial replication across environmental gradients (e.g. Figure 3B) provides
the opportunity for a complementary space-for-time substitution approach (Wion, Weisberg, Pearse, &
Redmond, 2020). The expected response of masting to climate change remains unresolved, and
MASTREE+ will enable testing of contrasting predictions that masting will be unresponsive to trends in
mean temperature (Kelly et al., 2013), or will shift predictably based on climate-driven changes in
resource limitation (Bogdziewicz, 2021). Resolving this uncertainty is a priority because changes in seed
masting will impact plant reproductive success, and more widely affect ecosystem services and habitat

management (Ida, 2021; I.S. Pearse et al., 2021; Touzot et al., 2020).

In systems where seed production limits recruitment, MASTREE+ can be utilised to understand the drivers
of plant reproduction and regeneration (Abraham, Sklavou, Loufi, Parissi, & Kyriazopoulos, 2018;
Manriquez et al., 2016; Oliva, Collantes, & Humano, 2013). Intraspecific differences in fecundity and
masting influence regeneration success, determining species composition and vegetation structure,
including during the colonisation of new habitats (Joubert, Smit, & Hoffman, 2013), and after natural and
anthropogenic disturbance (Martin-DeMoor, Lieffers, & Macdonald, 2010; Mokake et al., 2018; Peters,
MacDonald, & Dale, 2005). Masting characteristics of hundreds of species can be investigated using
MASTREE+, and integration with plant trait and demographic databases will enable deeper integration of

masting and reproductive strategies within life history theory (Salguero-Gomez et al., 2016). Many
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ecologically and economically important species show highly variable investment in reproduction
between years, and the ability to accurately forecast occasional years of high seed production is a priority
for habitat management, with wide ranging applications (Chiavetta & Marzini, 2021; I.S. Pearse et al.,
2021; Pukkala, Hokkanen, & Nikkanen, 2010). Predictive models of masting developed and tested using
MASTREE+ data may enable more effective seed collection for afforestation and restoration schemes
(Fargione et al., 2021; Kettle et al., 2010), inform wildlife and conservation management (Choquenot &
Ruscoe, 2000; Fujiki, 2018; Ida, 2021; O'Donnell & Hoare, 2012), and enable forecasting of periods of
elevated infection risk from tick-borne disease, which predictably follow years of high seed production in
many forest ecosystems (Brugger, Walter, Chitimia-Dobler, Dobler, & Rubel, 2018; Cunze et al., 2018;
Heyman, Thoma, Marié, Cochez, & Essbauer, 2012; Ostfeld, Jones, & Wolff, 1996).

The availability of seed and fruit production datasets in MASTREE+ will be broadly relevant when paired
with existing animal population datasets. The pulses of resources associated with large reproductive
events are key drivers of the population dynamics of seed-eating insects, mammals, and birds, with
cascading impacts through ecosystems (Bouchard, Regniere, & Therrien, 2018; Kanamori, Kuze, Bernard,
Malim, & Kohshima, 2017; Selonen, Wistbacka, & Korpimaki, 2016). Time-series in MASTREE+ can be
combined with existing long time-series of animal populations and behaviour to identify the drivers of
population dynamics, both in seed-dependent species and further down the trophic cascade (Kleef &
Wijsman, 2015; Lithner & Jonsson, 2002). Where species are well replicated in MASTREE+, the spatial
synchrony of masting can also be quantified, allowing researchers to determine where regional estimates
of masting can be appropriately used as indicators of local variability in seed or fruit availability. The scale
of spatial synchrony of masting appears to be highly variable between species (Bogdziewicz, Szymkowiak,
Fernandez-Martinez, Pefiuelas, & Espelta, 2019), but this has only been quantified of a handful of species

so far (Koenig & Knops, 2013; Jalene M. LaMontagne, Pearse, Greene, & Koenig, 2020).

In masting species, highly variable allocation to reproduction has wider effects on plant resource
allocation, and carbon and nutrient cycling through ecosystems, but this remains poorly explored
(Brumme et al., 2021; Khanna, Fortmann, Meesenburg, Eichhorn, & Meiwes, 2009; Muller-Haubold,
Hertel, & Leuschner, 2015). Data in MASTREE+ can be combined with existing field and remote-sensing
datasets of plant growth or productivity, and with datasets of whole-ecosystem or soil carbon and
nutrient fluxes to understand how variable allocation to reproduction influences carbon sequestration
above and belowground, and how this varies between species and across environmental gradients
(Bajocco et al., 2021; Nussbaumer et al., 2021; Oddou-Muratorio et al., 2021; Zhang, Wang, Xiao, & Lyu,

2022). Related work can use MASTREE+ data combined with existing or retrospective sampling (e.g. tree-
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rings) to address outstanding question regarding resource allocation between growth, reproduction, and
defence, particularly how this varies interspecifically and with environmental stress, and how this may
shape species and community responses to environmental change (Lauder, Moran, & Hart, 2019;

Redmond, Davis, Ferrenberg, & Wion, 2019).
4. Data sources, acquisition, and compilation

We collected species-specific time-series of annual reproductive effort for terrestrial perennial plant
populations, including trees, shrubs, herbs, and grasses. We included data from unmanaged and managed
populations, but excluded agricultural crop species subject to selective breeding. Where reproduction was
monitored under experimentally manipulated conditions (e.g., fertilisation, warming, rainfall exclusion)

we only included data from control plots.

Data were collected for reproductive effort at different stages of the reproductive cycle (e.g., flowers or
inflorescences, pollen abundance, number of fruits, cones, or seeds), but 90% of data were mature seed,
fruit, or cone production. We did not set a minimum time-series length but prioritised compiling effort on
time-series 24 years. All time-series represent reproductive effort at the population level, ranging from
local populations with <10 individuals to regional estimates of reproduction, and we recorded information
on the number of monitored individuals in each population and the spatial scale represented by the time-
series (Table 1). We also included information on the original data collection methods, which included
litter traps (19.3% of all records), seed, cone, and fruit counts (18.3%), other methods including estimates
of cone production using cone or fruit scars and categorical classification of seed and fruit crops by

wildlife managers or foresters.

Data were collected from several sources. We harmonised data from previously published compilations of
plant reproductive effort displaying differences in data architecture (Ascoli et al., 2020; Ascoli, Maringer,
et al., 2017; lan S. Pearse et al., 2020). To identify other time-series, we searched Google Scholar and
Scopus with multiple combinations of search terms (See Appendix 2). Spanish- and French-language
searches was used to increase data representation from South America and Africa. An initial screen was
based on the title and abstract to exclude irrelevant sources. Then, potential sources were classified
based on the inclusion of useful time-series data of reproductive effort, available as either data tables,
figures, descriptions in the text or in supplementary data files, or in online data repositories. Finally, we
solicited contributions of previously unpublished datasets from our research networks. Time-series were

extracted from the original sources. In the case of values published in tables, in the text, or in online data
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repositories or supplementary data files, we extracted values directly from the source. In cases where
data were contained in figures we used the WebPlotDigitizer tool (Rohatgi, 2020). Metadata associated
with each time-series was also extracted from the sources, or directly from dataset contributors, and

copies of original sources were archived.

Dataset variables

For each monitored population we recorded annual observations of reproductive effort, the units of
measurement, the method used to assess reproductive output and the number of monitored individuals
(Table 1). Where multiple measures of reproductive output were recorded for the same population (e.g.,
where seeds and cones were recorded separately), this was recorded to enable filtering of the dataset for
pseudoreplicates (Table 1). For ordinal series, we maintained the original number of classes, but we
rescaled to integer scales starting at 1 (lowest reproductive output). For continuous series, where possible
we converted data into a common unit (e.g. we converted “seeds/ha” to “seeds/m?”). Years with missing
observations are not recorded, and time-series that would otherwise have gaps consist of a set of
segments. The Start and End year corresponds to the first and last observation year for each time-series,
respectively, including all segments. Length is the number of observations within each time-series, and
can therefore be lower than the number of years between the Start and End. The location (decimal
degrees), site name, elevation and country of each time-series were recorded. The spatial scale
represented by the time-series was estimated on a four-point scale, from individual stand to region, based
on information contained in the original source. Information on the nature of the source, and reference
information was also recorded. Full details of data variables are listed in Table 1. Each time-series can be

uniquely defined by combining Alpha_Number, Site_number, Variable_number and Species_code.

Table 1. Overview of the data variables in the MASTREE+ dataset. A more detailed description of the

variables is included in Appendix 5.

Variable Description

Alpha_Number Unique code associated with each original source of data, i.e., the publication,
report, or thesis containing extracted data, or the previously unpublished dataset

included in MASTREE+

Segment Temporal segment of a time-series containing gaps (note that years with no

observations are not recorded). Individual time-series can consist of multiple
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segments.

Site_number

Code to differentiate multiple sites from the same original source

(Alpha_Number/Study_ID)

Variable_number

Code to differentiate multiple measures of reproductive output from the same

species-site combination (e.g. where seeds and cones were recorded separately)

Year

Year of observation

Species

Species identifier, standardised to the The Plant List nomenclature. “spp.” is used to
indicate a record identified to the genus level only. “MIXED” indicates a non-

species-specific community-level estimate of annual reproductive effort

Species_code

Six-character species identifier

Mono_Poly Monocarpic (semelparous) or Polycarpic (iteroparous) species

Value The measured value of annual reproductive output

VarType Continuous or Ordinal data. Continuous timeseries are recorded on a continuous
scale. Ordinal series are recorded on an ordered categorical scale. All ordinal series
are rescaled to start at 1 (lowest reproductive effort) and to contain only integer
values

Unit The unit of measurement, where VarType is continuous

Max_Value The maximum value in a time-series

Variable Categorical classification of the measured variable. Options limited to: cone, flower,

fruit, seed, pollen, total reproduction organs.

Collection_method

Classification of the method used to measure reproductive effort. Options are
limited to: cone count, cone scar count, flower count, fruit count, fruit scar sound,
seed count, seed trap, pollen count, lake sediment pollen count, harvest record,

visual crop assessment, other quantification, dendrochronological reconstruction

Latitude

Latitude of the record, in decimal degrees

Longitude

Longitude of the record, in decimal degrees

Coordinate_flag

A flag to indicate the precision of the latitude and longitude.

A = coordinates provided in the original source

B = coordinates estimated by the compiler based on a map or other location
information provided in the original source

C= coordinates estimated by the compiler as the approximate centrepoint of the

smallest clearly defined geographical unit provided in the original source (e.g.
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county, state, island), and potentially of low precision

Site A site name or description, based on information in the original source

Country The country where the observation was recorded

Elevation The elevation of the sample site in metres above sea level, where provided in the
original source

Spatial_unit Categorical classification of spatial scale represented by the record, estimated by

the compiler based on information provided in the original source.
stand = <100 ha

patch = 100-10,000 ha

region = 10,000-1,000,000 ha

super-region = >1,000,000 ha

No_individuals

Either the number of monitored individual plants, or the number of litter traps. NA
indicates no information in the original source, and 9999 indicates that while the
number of monitored individuals was not specified, the source indicated to the

compiler that the sample size was likely >=10 individuals or litter traps

Start The first year of observations for the complete time-series, including all segments
End The final year of observations for the complete time-series, including all segments
Length The number of years of observations. Note that may not be equal to the number of
years between the Start and End of the time-series, due to gaps in the time-series.
Reference Identification for the original source of the data, see Appendix 4 for the complete

list of references

Record_type

Categorisation of the original source.
Peer-reviewed = extracted from peer reviewed literature
Grey = extracted from grey literature

Unpublished = unpublished data

ID_enterer Identification of the original compiler of the data
AHP = Andrew Hacket-Pain; ES = Eliane Schermer; JVM = Jose Moris; XTT = Tingting
Xue; TC = Thomas Caignard; DV = Davide Vecchio; DA = Davide Ascoli; IP = lan
Pearse; JL = Jalene LaMontagne; JVD = Joep van Dormolen

Date_entry Date of data entry into MASTREE+ in the format yyyy-mm-dd

Note on data

location

Notes on the location of the data within the original source, such as page or figure

number
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Comments Additional comments

Study_ID Unique code associated with each source of data. M_ = series extracted from
published literature; A_ = series incorporated from Ascoli et al. (2017, 2020); PLK_ =

series incorporated from Pearse et al (2017); D_ = unpublished datasets

Technical validation and quality control

A two-stage approach was adopted to validate time-series data. Initially, we standardised attribute data
and checked for errors and inconsistencies within time-series. Species names were checked and
standardised to The Plant List nomenclature, using the “Taxonstand” package for R (v. 2.3) (Cayuela,
Macarro, Stein, & Oksanen, 2021). Country names were converted to the English short name (1ISO3166-1)
using the “countrycode” package for R (v. 1.2.0) (Arel-Bundock, Enevoldsen, & Yetman, 2018). Automatic
checks were performed to ensure that each time-series was uniquely identified by the identification
variables, and that time-series’ observations were uniquely identified by Year. Species _code was assigned
by automatically combining the first three characters from the TPL-standardised genus and species
names. Where separate species shared a Species_code, a unique combination was manually created. The
final character of Species_code for populations of a hybrid origin was changed to “X”. We ran various
automatic checks to ensure all observations in a time-series had uniform attribute data where such
uniformity was expected (i.e., within a time-series, there was only a single value for variables such as
Unit). Interrelated variables were checked to ensure consistency, for example that time-series spatial data
(Latitude, Longitude) fell within the boundaries of the indicated Country. Time-series duration variables

(i.e., Segment, Start, End, Length) were directly calculated from time-series.

The second stage involved the detection and removal of duplication problems between time-series, i.e.,
series added multiple times, including with partial overlap, usually when data was published in more than
one source. First, we created ‘potential duplication groups’ that contained sets of time-series that shared
the same study species and approximate location (using a = 0.1 decimal degree buffer between pairs of
time-series). PDGs containing time-series from multiple sources (Alpha_Number) were then inspected
further. Suspect pairs of time-series within PDGs were initially identified based on a correlation test
(Spearman's p > 0.97), and we then inspected manually for duplication using information including
location, units, and collection methods to identify possible duplication. To supplement the semi-

automated detection of duplicates, we performed a further manual check, examining groups of time-

This article is protected by copyright. All rights reserved




series that shared the same country and species. Suspect pairs of series might, for example, share

matching spatial references, matching site descriptions, and/or matching author names.

Where duplicated series were identified, or where independence could not be confirmed, we selected a
single time-series for inclusion in MASTREE+. Generally, the longest time-series was prioritised, unless
there were clear signs that a shorter time-series was of higher quality (e.g., the data was directly shared

by the author and not extracted from a graph).
5. Dataset availability and MASTREE+ Data Explorer

The dataset is provided as a csv file in the online supporting information (Appendix 1), and is distributed
under a CC-BY-4.0 licence so that it can be freely used, shared and modified so long as appropriate credit
is given. The dataset will be expanded and updated over time, so users are encouraged to check for the
latest version of the dataset on GitHub (https://github.com/JIFoest/MASTREEplus) and via associated
updates to the MASTREE+ Data Explorer. The MASTREE+ Data Explorer allows users to explore the
MASTREE+ dataset, and provides an alternative for downloading the dataset, including user-defined
subsets thereof. The MASTREE+ Data Explorer was created using the shiny package in R (Chang et al.,
2021), and can be accessed at https://mastreeplus.shinyapps.io/mastreeplus/. Time-series are plotted on
a zoomable world map, with updating summary plots showing the time-series lengths and species/genera
for the selected region, as well as scaled time-series for initial visualisation of the data within the selected
region of interest (Figure 5). Individual time-series can be selected on the map to reveal associated meta-
data, including the location, species, and original source. Various filter options allow the user to subset
the full dataset. An R script is provided in Appendix 6 that illustrates how to load, manipulate, and

visualise the dataset.

6. Call for data

We have increased taxonomic and geographic representation in MASTREE+, but many gaps remain in the
coverage of our dataset. Our goal is to provide a global platform for sharing data on long-lived plant
reproduction, and we encourage scientists to submit time-series of annual reproductive effort in
perennial plant populations for inclusion in MASTREE+ (Table 2). We will consider all species-specific time-
series of four or more years, including continuous and ordinal observations. We include time-series data

on flower, seed, fruit, and cone production. which are associated with geographical coordinates. We can
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include data that represents small local populations through to large regional-scale assessments of
reproductive effort. Note that we only record annual reproductive effort. Where data is collected at sub-

annual timesteps, this means that reproduction must be aggregated to annual units (e.g., April-March).

Potential contributors of data are encouraged to search the latest version of the dataset to check whether
the data is already included in MASTREE+, either by downloading the latest version from GitHub, Dryad
(Section 5) or via the MASTREE+ Data Explorer. If the data are not already included, potential contributors
are encouraged to contact the corresponding author to discuss arrangements for sharing data. The

minimum data requirements are included in Table 2.

Table 2. Minimum data requirements for submissions to MASTREE+. For further details see Table 1.

Minimum data requirements and metadata

Minimum of four consecutive measurements of annual reproductive output

Measurement at the population level (local population through regional scale estimates acceptable)

Species name according to The Plant List. Records identified to the genus level are acceptable, and

measurements of non-species-specific community reproductive effort may be included.

Spatial coordinates of the monitored population

Details of the method used to measure reproductive effort (e.g., litter traps, seed counts, visual crop

estimate, see Table).
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Data licence

MASTREE+ is published under a CC-BY-4.0 licence, which enables users to copy and redistribute, adapt
and modify the dataset in any medium or format and for any purpose, including commercial. You must
give appropriate credit by citing this publication, provide a link to the license, and indicate if changes were
made (see https://creativecommons.org/licenses/by/4.0/ for further details). Data can be accessed via
Github: https://github.com/JJFoest/MASTREEplus, Dryad: https://doi.org/10.5061/dryad.18931zd02, or
via the MASTREE+ Siny App. Publications using the RENECOFOR data (Reference = RENECOFOR_2020) are
requested to acknowledge the RENECOFOR network, and send copies of publications to
manuel.nicolas@onf.fr. Publications using the Lopé data (Reference = Bush_2021) are requested to cite
the original dataset http://hdl.handle.net/11667/152), acknowledge The National Parks Agency of Gabon
(ANPN) and the University of Stirling, and send copies of any resulting publications

to science@parcsgabon.ga and k.a.abernethy@stir.ac.uk.
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Figure Captions

Figure 1. Examples of population-level time-series of reproductive effort from MASTREE+. For five diverse
plant species, data from several local populations are plotted to illustrate the range of spatiotemporal
variation in reproduction that is typical in long-lived plants. Note that axis scales and units vary between

plots.

Figure 2. The geographical distribution of time-series within MASTREE+. The A) spatial and B) latitudinal
distribution of species-specific time-series. For B), series are stacked and coloured according to the
variable type (Continuous, Ordinal). Plotting of counts for ordinal data in the northern mid-latitudes are

truncated due to high sampling intensity in central Europe. Unprojected map, datum = WGS84.

Figure 3. Distribution of time-series in MASTREE+ according to local climate (Worldclim v2.1, 30 arcsecond
resolution, Mosier, Hill, & Sharp, 2014). Only time-series representing reproduction at the stand or patch
scale are plotted (regional records are excluded, as local climate data based on coordinates may not be
representative). A) Series plotted according to Whittaker biomes (Whittaker, 1970), and B) Species with
high replication (>=20 species-specific time-series), plotted according to local mean annual temperature.
Species are labelled according to the first three characters of the genus followed by the first three
characters of the species name, and species are ordered according to the sample site with the lowest
mean annual temperature. Unfilled points represent ordinal time-series and filled points represent

continuous time-series.

Figure 4. Timespans covered by species-specific time-series in MASTREE+, coloured by data class. Inset

plot shows continuous data since 1950 when time-series replication is highest.

Figure 5. Example of the MASTREE+ Shiny Data Explorer, showing data from the South Island of New
Zealand. The Data Explorer allows the user to explore data availability within MASTREE+, and download

the full or user-defined subsets of the dataset.
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